Jan Malmendier Dissertation Titles

  • L Álvarez-Gaumé, M Mariño, F Zamora, Softly broken $N=2$ QCD with massive quark hypermultiplets, I, Internat. J. Modern Phys. A 13 (1998) 403–430

    Mathematical Reviews (MathSciNet): MR1621192
    Digital Object Identifier: doi:10.1142/S0217751X98000184

  • G E Andrews, Mordell integrals and Ramanujan's “lost” notebook, from: “Analytic number theory (Philadelphia, PA, 1980)”, (M I Knopp, editor), Lecture Notes in Math. 899, Springer, Berlin (1981) 10–18

    Mathematical Reviews (MathSciNet): MR654518
    Zentralblatt MATH: 0482.33002

  • M F Atiyah, The logarithm of the Dedekind $\eta$–function, Math. Ann. 278 (1987) 335–380

    Mathematical Reviews (MathSciNet): MR909232
    Zentralblatt MATH: 0648.58035
    Digital Object Identifier: doi:10.1007/BF01458075

  • M F Atiyah, I M Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 2597–2600

    Mathematical Reviews (MathSciNet): MR742394
    Zentralblatt MATH: 0547.58033
    Digital Object Identifier: doi:10.1073/pnas.81.8.2597

  • K Bringmann, K Ono, The $f(q)$ mock theta function conjecture and partition ranks, Invent. Math. 165 (2006) 243–266

    Mathematical Reviews (MathSciNet): MR2231957
    Digital Object Identifier: doi:10.1007/s00222-005-0493-5

  • K Bringmann, K Ono, Dyson's ranks and Maass forms, Ann. of Math. 171 (2010) 419–449

    Mathematical Reviews (MathSciNet): MR2630043
    Zentralblatt MATH: 1277.11096
    Digital Object Identifier: doi:10.4007/annals.2010.171.419

  • K Bringmann, K Ono, R C Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc. 21 (2008) 1085–1104

    Mathematical Reviews (MathSciNet): MR2425181
    Zentralblatt MATH: 1208.11065
    Digital Object Identifier: doi:10.1090/S0894-0347-07-00587-5

  • J H Bruinier, Borcherds products on O(2, $l$) and Chern classes of Heegner divisors, Lecture Notes in Math. 1780, Springer, Berlin (2002)

    Mathematical Reviews (MathSciNet): MR1903920

  • J H Bruinier, J Funke, On two geometric theta lifts, Duke Math. J. 125 (2004) 45–90

    Mathematical Reviews (MathSciNet): MR2097357
    Zentralblatt MATH: 1088.11030
    Digital Object Identifier: doi:10.1215/S0012-7094-04-12513-8
    Project Euclid: euclid.dmj/1096128234

  • J H Bruinier, K Ono, Heegner divisors, $L$–functions and harmonic weak Maass forms, Ann. of Math. 172 (2010) 2135–2181

    Mathematical Reviews (MathSciNet): MR2726107
    Digital Object Identifier: doi:10.4007/annals.2010.172.2135

  • J H Bruinier, G van der Geer, G Harder, D Zagier, The 1-2-3 of modular forms, (K Ranestad, editor), Universitext, Springer, Berlin (2008) Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004

    Mathematical Reviews (MathSciNet): MR2385372
    Zentralblatt MATH: 1197.11047

  • J H Bruinier, T Yang, Faltings heights of CM cycles and derivatives of $L$–functions, Invent. Math. 177 (2009) 631–681

    Mathematical Reviews (MathSciNet): MR2534103
    Digital Object Identifier: doi:10.1007/s00222-009-0192-8

  • Y Choie, M H Lee, Rankin–Cohen brackets on pseudodifferential operators, J. Math. Anal. Appl. 326 (2007) 882–895

    Mathematical Reviews (MathSciNet): MR2280950
    Zentralblatt MATH: 1114.11046
    Digital Object Identifier: doi:10.1016/j.jmaa.2006.03.048

  • S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press, New York (1990)

    Mathematical Reviews (MathSciNet): MR1079726
    Zentralblatt MATH: 0820.57002

  • F J Dyson, A walk through Ramanujan's garden, from: “Ramanujan revisited (Urbana-Champaign, IL, 1987)”, (G E Andrews, R A Askey, B C Berndt, K G Ramanathan, R A Rankin, editors), Academic Press, Boston (1988) 7–28

    Mathematical Reviews (MathSciNet): MR938957
    Zentralblatt MATH: 0652.10009

  • G Ellingsrud, L G öttsche, Wall-crossing formulas, the Bott residue formula and the Donaldson invariants of rational surfaces, Quart. J. Math. Oxford Ser. 49 (1998) 307–329

    Mathematical Reviews (MathSciNet): MR1645556
    Zentralblatt MATH: 0951.57016

  • D S Freed, K K Uhlenbeck, Instantons and four-manifolds, second edition, MSRI Publ. 1, Springer, New York (1991)

    Mathematical Reviews (MathSciNet): MR1081321
    Zentralblatt MATH: 0559.57001

  • A L Gorodenzev, Top Chern classes of universal bundles on the complex projective plane and correlation functions of asymptotically free SYM $N=2$ QFT, J. Math. Sci. $($New York$)$ 106 (2001) 3240–3257

    Mathematical Reviews (MathSciNet): MR1878046
    Digital Object Identifier: doi:10.1023/A:1017947107798

  • L G öttsche, Modular forms and Donaldson invariants for $4$–manifolds with $b_{+}=1$, J. Amer. Math. Soc. 9 (1996) 827–843

    Mathematical Reviews (MathSciNet): MR1362873
    Digital Object Identifier: doi:10.1090/S0894-0347-96-00212-3

  • L G öttsche, Donaldson invariants in algebraic geometry, from: “School on Algebraic Geometry (Trieste, 1999)”, (L G öttsche, editor), ICTP Lect. Notes 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2000) 101–134

    Mathematical Reviews (MathSciNet): MR1795862

  • L G öttsche, H Nakajima, K Yoshioka, Instanton counting and Donaldson invariants, J. Differential Geom. 80 (2008) 343–390

    Mathematical Reviews (MathSciNet): MR2472477
    Zentralblatt MATH: 1172.57015
    Digital Object Identifier: doi:10.4310/jdg/1226090481
    Project Euclid: euclid.jdg/1226090481

  • L G öttsche, D Zagier, Jacobi forms and the structure of Donaldson invariants for $4$–manifolds with $b_+=1$, Selecta Math. 4 (1998) 69–115

    Mathematical Reviews (MathSciNet): MR1623706
    Digital Object Identifier: doi:10.1007/s000290050025

  • F Hirzebruch, D Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976) 57–113

    Mathematical Reviews (MathSciNet): MR0453649
    Zentralblatt MATH: 0332.14009
    Digital Object Identifier: doi:10.1007/BF01390005

  • A A Klyachko, Moduli of vector bundles and numbers of classes, Funktsional. Anal. i Prilozhen. 25 (1991) 81–83

    Mathematical Reviews (MathSciNet): MR1113131
    Zentralblatt MATH: 0731.14009
    Digital Object Identifier: doi:10.1007/BF01079587

  • D Kotschick, ${\rm SO}(3)$–invariants for $4$–manifolds with $b^ +_2=1$, Proc. London Math. Soc. 63 (1991) 426–448

    Mathematical Reviews (MathSciNet): MR1114516
    Digital Object Identifier: doi:10.1112/plms/s3-63.2.426

  • D Kotschick, P Lisca, Instanton invariants of $\mathbf C{\rm P}^2$ via topology, Math. Ann. 303 (1995) 345–371

    Mathematical Reviews (MathSciNet): MR1348804
    Zentralblatt MATH: 0844.57034
    Digital Object Identifier: doi:10.1007/BF01460994

  • D Kotschick, J W Morgan, ${\rm SO}(3)$–invariants for $4$–manifolds with $b^ +_2=1$. II, J. Differential Geom. 39 (1994) 433–456

    Mathematical Reviews (MathSciNet): MR1267898
    Digital Object Identifier: doi:10.4310/jdg/1214454879
    Project Euclid: euclid.jdg/1214454879

  • P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573–734

    Mathematical Reviews (MathSciNet): MR1338483
    Zentralblatt MATH: 0842.57022
    Digital Object Identifier: doi:10.4310/jdg/1214456482
    Project Euclid: euclid.jdg/1214456482

  • J M F Labastida, C Lozano, Duality in twisted ${\mathscr N}=4$ supersymmetric gauge theories in four dimensions, Nuclear Phys. B 537 (1999) 203–242

    Mathematical Reviews (MathSciNet): MR1659299
    Digital Object Identifier: doi:10.1016/S0550-3213(98)00653-1

  • T G Leness, Degeneracy loci of families of Dirac operators, Trans. Amer. Math. Soc. 364 (2012) 5995–6008

    Mathematical Reviews (MathSciNet): MR2946940
    Zentralblatt MATH: 1275.53043
    Digital Object Identifier: doi:10.1090/S0002-9947-2012-05679-0

  • A Losev, N Nekrasov, S Shatashvili, Issues in topological gauge theory, Nuclear Phys. B 534 (1998) 549–611

    Mathematical Reviews (MathSciNet): MR1663467
    Zentralblatt MATH: 0954.57013
    Digital Object Identifier: doi:10.1016/S0550-3213(98)00628-2

  • A Malmendier, |Expressions for the generating function of the Donaldson invariants for $\mathbb{C}\mathrm{P}^2$, PhD thesis, Massachusetts Insitute of Technology (2007) Available at \setbox0\makeatletter\@url http://hdl.handle.net/1721.1/38959 {\unhbox0

    URL: Link to item

  • A Malmendier, The signature of the Seiberg–Witten surface, from: “Surveys in differential geometry. Volume XV. Perspectives in mathematics and physics”, (T Mrowka, S-T Yau, editors), Surv. Differ. Geom. 15, Int. Press, Somerville, MA (2011) 255–277

    Mathematical Reviews (MathSciNet): MR2815730
    Zentralblatt MATH: 1243.14035

  • M Mariño, G Moore, Integrating over the Coulomb branch in ${\mathscr N}=2$ gauge theory, Nuclear Phys. B Proc. Suppl. 68 (1998) 336–347 Strings '97 (Amsterdam, 1997)

    Mathematical Reviews (MathSciNet): MR1641983
    Digital Object Identifier: doi:10.1016/S0920-5632(98)00168-6

  • R Miranda, Persson's list of singular fibers for a rational elliptic surface, Math. Z. 205 (1990) 191–211

    Mathematical Reviews (MathSciNet): MR1076128
    Zentralblatt MATH: 0722.14022
    Digital Object Identifier: doi:10.1007/BF02571235

  • R Miranda, An overview of algebraic surfaces, from: “Algebraic geometry (Ankara, 1995)”, (S Sert öz, editor), Lecture Notes in Pure and Appl. Math. 193, Dekker, New York (1997) 157–217

    Mathematical Reviews (MathSciNet): MR1483329
    Zentralblatt MATH: 0903.14011

  • G Moore, E Witten, Integration over the $u$–plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1997) 298–387

    Mathematical Reviews (MathSciNet): MR1605636
    Zentralblatt MATH: 0899.57021
    Digital Object Identifier: doi:10.4310/ATMP.1997.v1.n2.a7

  • W Nahm, On electric-magnetic duality, Nuclear Phys. B Proc. Suppl. 58 (1997) 91–96 Advanced quantum field theory (La Londe les Maures, 1996)

    Mathematical Reviews (MathSciNet): MR1486333
    Zentralblatt MATH: 0976.81509
    Digital Object Identifier: doi:10.1016/S0920-5632(97)00415-5

  • K Oguiso, T Shioda, The Mordell–Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991) 83–99

    Mathematical Reviews (MathSciNet): MR1104782
    Zentralblatt MATH: 0757.14011

  • K Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, from: “Current developments in mathematics, 2008”, (D Jerison, B Mazur, T Mrowka, W Schmid, R P Stanley, S-T Yau, editors), Int. Press, Somerville, MA (2009) 347–454

    Mathematical Reviews (MathSciNet): MR2555930
    Zentralblatt MATH: 1229.11074

  • U Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990) 1–47

    Mathematical Reviews (MathSciNet): MR1069483
    Zentralblatt MATH: 0722.14021
    Digital Object Identifier: doi:10.1007/BF02571223

  • N Seiberg, E Witten, Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory, Nuclear Phys. B 426 (1994) 19–52

    Mathematical Reviews (MathSciNet): MR1293681
    Digital Object Identifier: doi:10.1016/0550-3213(94)90124-4

  • N Seiberg, E Witten, Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD, Nuclear Phys. B 431 (1994) 484–550

    Mathematical Reviews (MathSciNet): MR1306869
    Digital Object Identifier: doi:10.1016/0550-3213(94)90214-3

  • Y Shimizu, Seiberg–Witten integrable systems and periods of rational elliptic surfaces, from: “Primes and knots”, (T Kohno, M Morishita, editors), Contemp. Math. 416, Amer. Math. Soc. (2006) 237–247

    Mathematical Reviews (MathSciNet): MR2276144

  • G Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973) 440–481

    Mathematical Reviews (MathSciNet): MR0332663
    Zentralblatt MATH: 0266.10022
    Digital Object Identifier: doi:10.2307/1970831

  • T Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20–59

    Mathematical Reviews (MathSciNet): MR0429918
    Zentralblatt MATH: 0226.14013
    Digital Object Identifier: doi:10.2969/jmsj/02410020
    Project Euclid: euclid.jmsj/1259849853

  • P F Stiller, Elliptic curves over function fields and the Picard number, Amer. J. Math. 102 (1980) 565–593

    Mathematical Reviews (MathSciNet): MR584462
    Zentralblatt MATH: 0455.14017
    Digital Object Identifier: doi:10.2307/2374089

  • P F Stiller, Monodromy and invariants of elliptic surfaces, Pacific J. Math. 92 (1981) 433–452

    Mathematical Reviews (MathSciNet): MR618076
    Zentralblatt MATH: 0475.14030
    Digital Object Identifier: doi:10.2140/pjm.1981.92.433
    Project Euclid: euclid.pjm/1102736803

  • S A Strømme, Ample divisors on fine moduli spaces on the projective plane, Math. Z. 187 (1984) 405–423

    Mathematical Reviews (MathSciNet): MR757480
    Zentralblatt MATH: 0533.14006
    Digital Object Identifier: doi:10.1007/BF01161956

  • C Vafa, E Witten, A strong coupling test of $S$–duality, Nuclear Phys. B 431 (1994) 3–77

    Mathematical Reviews (MathSciNet): MR1305096
    Zentralblatt MATH: 0964.81522
    Digital Object Identifier: doi:10.1016/0550-3213(94)90097-3

  • E Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988) 353–386

    Mathematical Reviews (MathSciNet): MR953828
    Zentralblatt MATH: 0656.53078
    Digital Object Identifier: doi:10.1007/BF01223371
    Project Euclid: euclid.cmp/1104161738

  • E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769–796

    Mathematical Reviews (MathSciNet): MR1306021
    Zentralblatt MATH: 0867.57029
    Digital Object Identifier: doi:10.4310/MRL.1994.v1.n6.a13

  • E Witten, On $S$–duality in abelian gauge theory, Selecta Math. 1 (1995) 383–410

    Mathematical Reviews (MathSciNet): MR1354602
    Zentralblatt MATH: 0833.53024
    Digital Object Identifier: doi:10.1007/BF01671570

  • K Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on $\mathbf P^2$, J. Reine Angew. Math. 453 (1994) 193–220

    Mathematical Reviews (MathSciNet): MR1285785

  • D Zagier, Ramanujan's mock theta functions and their applications (after Zwegers and Ono–Bringmann), from: “Séminaire Bourbaki. Vol. 2007/2008”, Astérisque 326, Soc. Math. France (2009) vii–viii, 143–164

    Mathematical Reviews (MathSciNet): MR2605321
    Zentralblatt MATH: 1198.11046

  • S P Zwegers, Mock theta functions, PhD thesis, Universiteit Utrecht (2002) Available at \setbox0\makeatletter\@url http://igitur-archive.library.uu.nl/dissertations/2003-0127-094324/inhoud.htm {\unhbox0

    URL: Link to item
    Zentralblatt MATH: 1194.11058

  • Otto-von-Guericke-Universität Magdeburg

    Springen Sie direkt: Zum Textanfang (Navigation überspringen),  Zur Hauptnavigation,  Zur Themennavigation,  Zur den Direktlinks,  Zur Fußnavigation,  Zur Hilfsnavigation,  Zur Krümelnavigation,  Zur Suche,  Zur Sprachauswahl

















    Ehemalige Teammitglieder


    Dr. Steffen Greubel
    Dissertation:  Analyse der Unternehmensumwelt im Dienstleistungssektor - Empfehlungen zur Methodenselektion und -erweiterung am Beispiel großer Finanz-dienstleistungsunternehmen auf Basis einer empirischen Untersuchung, Rainer Hampp Verlag, München u.a., 2007
    Prof. Dr. Markus Grün
    Dissertation:  Die tiefenpsychologische Fundierung von Personalentscheidungen, Rainer Hampp Verlag, München u.a., 2003
    Claudia Hüge

    Dr. Fabian C.F. Kratzberg
    Dissertation:  Fuzzy-Szenario-Management - Verarbeitung von Unbestimmtheit im strategischen Management, Sierke Verlag, Göttingen, 2009

    Dr. Alexander Krieg
    Dissertation:  Modellbasierte Untersuchung der Effizienz von Anreizsystemen,  Rainer Hampp Verlag, München u.a., 2013

    Sabine Lisowski

    Dr. Jan Malmendier
    Dissertation:  Ein Modell zur Arbeitsplatzwahl als Grundlage für ein Relatioship-Marketing-Konzept im Bereich High-Potentials, 2006

    Dipl.-Kffr. Janine Mollenhauer

    Dr. Jan Laser:

    Dissertation: Flexible und stabile Laufbahnplanung-Transition-Managment aus der Unternehmens- und Ressourcenperspektive

    Dipl.-Kfm. Andrè Mangelsdorf
    Dr. Björn Momsen
    Dissertation:  Entscheidungsunterstützung im Wissensmanagement durch fuzzy regelbasierte Systeme, Sierke Verlag, Göttingen, 2006
    Dr. Jessica Naundorf
    Dissertation: Kritische Analyse von Employer Awards im Kontext des Employer Branding, Rainer Hampp Verlag, München und Mering, 2016. Link
    M. Sc. Annika Schardt
    M. Sc. Chris Schneider
    Dr. Alexandra Schroll
    Dissertation:  Bedarfs- und mitarbeitergerechte Dienstplanung mit Fuzzy-Control, Sierke Verlag, Göttingen, 2007
    Dipl.-Kfm. Guido Seebothe
    PD Dr. Ulrike Settnik
    Habilitation:  Tauschtheoretische Analyse von Unternehmenszusammenschlüssen, Deutscher Universitäts-Verlag, Wiesbaden, 2006
    Dissertation:  Erfolgreiche Unternehmenspolitik auf den europäischen Versicherungs-märkten, Deutscher Universitäts-Verlag und Gabler Verlag, Wiesbaden, 1996
    Dipl.-Kffr. Thekla Thiel
    Dipl.-Kfm. Steffen Voigt
    Dipl.-Psych. Esther Warnecke

    Dr. Matthias Weber

    Dissertation: Fairness, Reziprozität und Motivation - eine empirische Untersuchung des Verhaltens in Arbeitsverhältnissen

    Dr. Tobias Wischer
    Dissertation:  Ein Modell zur Beurteilung der Effizienz von Anreizsystemen: Erweiterung des Kossbielschen Effizienzansatzes auf Basis des Rubikon-Modells, Rainer Hampp Verlag, München und Mering, 2005

    Letzte Änderung: 01.03.2018 - Ansprechpartner: Webmaster














    Categories: 1

    0 Replies to “Jan Malmendier Dissertation Titles”

    Leave a comment

    L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *